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SUMMARY

Learned and adaptive behaviors rely on neural circuits that flexibly couple the same sensory input 

to alternative output pathways. Here, we show that the Drosophila mushroom body functions like 

a switchboard in which neuromodulation reroutes the same odor signal to different behavioral 

circuits, depending on the state and experience of the fly. Using functional synaptic imaging and 

electrophysiology, we reveal that dopaminergic inputs to the mushroom body modulate synaptic 

transmission with exquisite spatial specificity, allowing individual neurons to differentially convey 

olfactory signals to each of their postsynaptic targets. Moreover, we show that the dopaminergic 

neurons function as an interconnected network, encoding information about both an animal's 

external context and internal state to coordinate synaptic plasticity throughout the mushroom 

body. Our data suggest a general circuit mechanism for behavioral flexibility in which 

neuromodulatory networks act with synaptic precision to transform a single sensory input into 

different patterns of output activity.
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INTRODUCTION

Animals must constantly adapt their behavior to meet the demands of their ever-changing 

external environment and internal needs. Neuromodulators provide an evolutionarily 

conserved mechanism to generate behavioral variability (Bargmann, 2012; Marder, 2012). 

By rapidly regulating neuronal excitability and the strength of synaptic connections between 

neurons, neuro-modulators confer functional flexibility to anatomically invariant circuits. 

Context- and state-dependent patterns of neuromodulator release can thereby tune neural 

circuit properties to produce alternative responses to the same sensory stimulus.

Dopaminergic pathways have been investigated extensively as part of a reinforcement 

system that motivates and modifies many facets of animal behavior (Beninger, 1983; 

Bromberg-Martin et al., 2010; Redgrave and Gurney, 2006; Schultz et al., 1997; Waddell, 

2013; Wise, 2004). Dopamine acts through multiple receptors that couple to distinct 

intracellular signaling cascades, enabling this single neuromodulator to have diverse effects 

on synaptic function and communication (Tritsch and Sabatini, 2012). Linking mechanisms 

of synaptic modulation to the generation of adaptive behaviors, however, requires a circuit-

level understanding of how dopaminergic pathways encode the ongoing experience of an 

animal and reinforce appropriate neural circuit configurations. While mammalian midbrain 

dopaminergic neurons are known to be important mediators of flexible circuit processing, 

their anatomic and functional heterogeneity and the intricate wiring of their target neuropils 

(Beier et al., 2015; Fiorillo et al., 2013; Lammel et al., 2014; Lerner et al., 2015) have made 

it difficult to resolve how they can selectively alter synaptic signaling between different 

neural pathways. Moreover, the dopamine they release has been suggested to act over long 

distances, by diffusing through the extracellular space, and at select synaptic sites (Rice et 

al., 2011). Consequently, how dopaminergic pathways sculpt synaptic connections to 

precisely shape circuit function remains unclear.
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The insect mushroom body is an integrative brain center whose orderly circuit architecture 

provides an opportunity to examine how neuromodulators flexibly regulate the flow of 

sensory information. In Drosophila, the mushroom body has been best studied for its 

essential role in olfactory learning in which past experience alters the subsequent behavioral 

response to an odor (Heisenberg, 2003; Keene and Waddell, 2007). The convergence of 

olfactory and dopaminergic reinforcement signals in the mushroom body also renders it 

ideally suited to shape odor processing based on the acute needs of an animal. Indeed, the 

mushroom body plays a role in the context-dependent processing of odor signals, 

modulating innate olfactory preferences in response to ongoing changes to a fly's 

environment or internal state (Lewis et al., 2015; Owald et al., 2015).

In the mushroom body, odors are encoded as sparse ensembles of activated Kenyon cells 

(KCs) (Campbell et al., 2013), each of which integrates input from diverse combinations of 

olfactory glomeruli in the calyx (Caron et al., 2013; Gruntman and Turner, 2013). The 

~2,000 KCs propagate their odor responses along parallel axon fibers into the mushroom 

body's output lobes. Here we focus on γ KCs, each of which projects a single axon that 

traverses across the γ lobe (Figures 1A and 1B). Each KC axon synapses onto a small 

number of mushroom body output neurons (MBONs), whose segregated dendrites tile the 

complete length of the lobe to form five discrete anatomic compartments (γ1–γ5) (Figures 

1A and 1C). The MBONs, as the only known efferent pathways of the mushroom body, 

must translate KC odor representations into adaptive behavioral responses (Aso et al., 

2014a; Tanaka et al., 2008). MBON axons converge on a small number of target neuropils, 

where their concerted activity has been proposed to bias an animal's innate and learned 

olfactory preferences (Aso et al., 2014b; Hige et al., 2015; Owald et al., 2015).

The mushroom body lobes are also richly innervated by dopaminergic neurons (DANs) 

thought to convey the contextual signals that impart meaning to an odor (Aso et al., 2012; 

Burke et al., 2012; Claridge-Chang et al., 2009; Liu et al., 2012; Mao and Davis, 2009; 

Waddell, 2013; Yamagata et al., 2015). Rewarding and punishing experiences have been 

shown to activate distinct subsets of DANs, each of which projects axons into just one of the 

lobe compartments (Figures 1A and 1D), mirroring the segregated innervation pattern of the 

MBONs. This anatomic arrangement suggests that DANs may convey positive and negative 

contextual information to different synapses along a KC axon, permitting differential tuning 

of neurotransmission to each MBON under different circumstances.

Here we took advantage of the mushroom body's anatomic organization to elucidate how 

dopaminergic pathways instruct synaptic and circuit plasticity. We developed a synaptic 

activity reporter to visualize spatiotemporal patterns of modulation, and we demonstrate that 

DANs modify synapses in discrete subcellular domains along the length of individual KC 

axons. Moreover, we show that DANs form part of a highly interconnected network that 

coordinates synaptic plasticity across the mushroom body in response to both external 

contextual cues and the fly's internal state. Thus, the concerted action of the dopaminergic 

population acts with exquisite spatial precision to regulate the flow of olfactory signals to 

each mushroom body output pathway, providing a circuit mechanism to generate flexible 

responses to an odor.
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RESULTS

An Optical Sensor of Presynaptic Activity

Presynaptic Ca2+ is a key regulator of neurotransmission and effector of neuromodulation 

(Regehr, 2012), suggesting it should provide a sensitive readout of synaptic function. We 

therefore generated sytGCaMP, in which the genetically encoded Ca2+ indicator GCaMP6s 

is tethered to the C terminus of the vesicular synaptic protein synaptotagmin (Figure S1A). 

We initially confirmed that sytGCaMP co-localizes with endogenous synaptic proteins and 

consequently detects Ca2+ influx specifically at presynaptic terminals (Figures S1B–S1G). 

We then expressed sytGCaMP in all γ KCs using a selective promoter (Figure S1H), and we 

focally stimulated the calyx to activate an individual neuron in a brain explant. We 

performed volumetric two-photon imaging to capture the fluorescently tagged synapses of 

the KC's full axonal arbor as it ramified through multiple imaging planes within the γ lobe. 

Stimulation of a single KC evoked robust fluorescence increases at punctate loci distributed 

along the length of its axon (Figures 1E and S1I), consistent with sytGCaMP's synaptic 

localization and anatomic evidence that KCs form output synapses in all compartments of 

the γ lobe (Figures S1J and S4B). Thus, sytGCaMP facilitates the detection of Ca2+ influx at 

individual synaptic sites, providing a technical strategy to resolve differences in presynaptic 

function and modulation across the compartments of the lobe.

DANs Represent Context through Coordinated Patterns of Activity

We next used the presynaptic localization of sytGCaMP to monitor the activity of the DAN 

population and gain insight into the patterns of dopamine release across the γ lobe in 

different contexts. We combined the tyrosine hydroxylase and dopa-decarboxylase 

promoters to drive expression of sytGCaMP in the DANs, innervating every compartment of 

the γ lobe. The axon terminals of DANs innervating the γ2–γ5 compartments could be 

monitored in a single optical imaging plane, allowing us to simultaneously record their 

synaptic responses to positive and negative reinforcement stimuli (Figure 2A).

Discrete subsets of DANs are sufficient to instruct learned odor attraction or aversion, 

suggesting they may autonomously encode the contextual signals that impart meaning to an 

olfactory experience. However, while sugar feeding activated the γ4 and γ5 DANs, in accord 

with their established role in driving the formation of appetitive olfactory associations (Liu 

et al., 2012; Yamagata et al., 2015; Waddell, 2013), we observed that sucrose ingestion also 

inhibited the γ2 and γ3 DANs (Figure 2B; Movie S1; Table S1). Conversely, the γ2 DAN 

has been shown to respond to electric shock and contribute to aversive olfactory 

conditioning (Aso et al., 2012; Claridge-Chang et al., 2009; Mao and Davis, 2009). We 

confirmed that a brief electric shock applied to the fly's abdomen activated the γ2 DAN, but 

found that it also excited the γ3 DANs and inhibited the γ4 and γ5 DANs (Figure 2C). Thus, 

the DANs of each compartment represent reinforcement stimuli through either excitation or 

inhibition, analogous to the bidirectional signaling observed in mammalian midbrain DANs 

in response to positive and negative cues (Bromberg-Martin et al., 2010; Lerner et al., 2015). 

The reciprocal patterns of DAN activity evoked by these appetitive and aversive stimuli 

suggest that mushroom body reinforcement pathways may act in concert to regulate 

olfactory processing through coordinated patterns of dopamine release across compartments.
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DAN activity fluctuated significantly even in the absence of overt stimulation. Video 

monitoring of the fly during DAN imaging revealed that these fluctuations are highly 

correlated with motor output (Figure 2D; Movie S2). Tethered animals generally alternated 

between two distinct behavioral states—quiescence and rapid kicking or flailing that 

resembled escape behavior. Flailing was strongly correlated with high γ2/γ3 and low γ4/γ5 

DAN activity, similar to the pattern evoked by electric shock. In contrast, quiescence 

elicited the reciprocal pattern, resembling the DAN response to sugar feeding (Figures 2E 

and S2A). Thus, different behavioral states induce distinct bidirectional patterns of activity 

across the DAN population. Interestingly, the strict correlations exhibited by DANs during 

tethered behavior were altered when the same fly walked on a freely rotating ball (Figure 

S2B). For example, during walking, γ4 and γ5 DANs were no longer strictly synchronized 

and γ4 DANs instead became transiently entrained to either γ3 or γ5 DAN activity. Odor 

stimuli, likewise, disrupted the baseline correlations between DANs (Figure S2C). These 

observations imply that the functional relationships between DANs are not absolute but 

rather an emergent property, depending on both salient external sensory signals and a fly's 

internal state.

Functional Communication between Compartments Coordinates DAN Activity

Recent anatomic data reveal that DANs and MBONs innervating different compartments 

may be functionally interconnected via overlapping projections in the protocerebrum (Aso et 

al., 2014a). We therefore asked whether the correlated, partially antagonistic DAN activity 

patterns we observed are shaped by circuit interactions between compartments. We used the 

58E02 promoter fragment (Liu et al., 2012) to selectively express the ATP-gated P2X2 

channel in a subset of DANs, including those innervating the γ4 and γ5 compartments. 

Activation of 58E02+ DANs by application of ATP to their dendrites evoked robust 

inhibition of the γ2 DAN (Figure 3A). The γ3 DANs also frequently were inhibited but 

occasionally activated, due to variable labeling of this compartment by the 58E02 driver. 

Therefore, excitation of a subset of DANs is sufficient to suppress those targeting other 

compartments, yielding a bidirectional pattern of activity similar to that evoked by a sugar 

reward. Direct or indirect communication between the DANs innervating different 

compartments may, therefore, underlie their concerted representation of reinforcement 

signaling.

To investigate whether feedback from MBONs contributes to the functional coordination of 

DANs, we stimulated individual γ MBONs using sparse driver lines to express P2X2 and 

focally injecting ATP onto their axons. Activation of each γ lobe MBON triggered 

excitation or inhibition of the DANs in every compartment (Figures 3B–3E), similar to the 

distributed activity patterns evoked by physiological reinforcement experiences. The 

bidirectional nature of DAN activity elicited by excitation of single MBONs indicates that 

multisynaptic interactions functionally link extrinsic neurons innervating different 

compartments. Thus, MBONs and DANs comprise a complex interconnected network, 

providing a potential substrate for the diverse functional relationships between DANs that 

emerge in different behavioral contexts (Figures 2 and S2). Together, these data suggest that 

DANs do not act autonomously to convey the valence of a reinforcement stimulus to just a 

single compartment, but rather they function as a dynamic ensemble, integrating information 
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about environmental stimuli and internal state to convey the moment-by-moment experience 

of the fly to all compartments of the lobe.

Compartmentalized Synaptic Domains along KC Axons

We next asked how coordinated patterns of DAN activity might shape the flow of olfactory 

signals along KC axons as they traverse through the different compartments of the lobe. We 

expressed sytGCaMP in γ KCs (Figure 4A) and used volumetric two-photon imaging to 

monitor their complement of synapses within the γ lobe in vivo. Unexpectedly, the 

distribution of odor-evoked presynaptic Ca2+ along KC axons was highly non-uniform and 

displayed a discrete modular organization in each of the 12–18 imaging planes (Figures 4B, 

4C, S3A, S3B, and S4C; Movie S3). The asymmetry in presynaptic Ca2+ was often apparent 

basally, prior to odor stimulation (Figure S3D), suggesting that persistent differences in 

synaptic function along KC axons could influence the processing of all incoming odor 

stimuli. Consistent with this idea, the same modular pattern of presynaptic Ca2+ was evoked 

in response to every odor tested and over a range of concentrations (Figures S3E and S4H).

Alignment of sytGCaMP responses with the projections of MBONs and DANs in the γ lobe 

indicated that the discrete Ca2+ domains apparent in KC axons map to the different 

compartments of the lobe (Figure S3F). To confirm this, we imaged KC synaptic responses 

in animals that also expressed a red fluorophore in a subset of DANs, and we observed that 

the sharp borders separating regions of high and low synaptic Ca2+ aligned with the 

compartmental boundaries (Figure 4E). Odor-evoked synaptic responses in KCs were 

significantly more robust in the γ2 and γ3 compartments relative to those in the γ4 

compartment, with even weaker responses evident in the γ5 compartment (Figure 4C). Thus, 

the distribution of presynaptic Ca2+ along KC axons adheres to the modular architecture of 

the lobes, demonstrating that the anatomic compartments represent functionally distinct 

units. Moreover, KC classes innervating other lobes also exhibited modular sytGCaMP 

signals (Figure S3G), indicating that compartmentalized synaptic Ca2+ is a general feature 

of odor representations in the mushroom body lobes.

Asymmetric presynaptic Ca2+ domains could arise from differences in KC innervation along 

the γ lobe or from functional variation along individual KC axons. Single-cell labeling of 

>80 γ KCs verified they invariantly traverse the entire lobe (Figure S4A) and are poised to 

carry the same odor signals to each compartment. However, functional synaptic 

heterogeneity was evident along sparsely labeled KC axons (Figures 4F and S3C) co-

expressing sytGCaMP and a red fluorophore to delineate their anatomic projections. 

Synaptic boutons decorating the same KC axons exhibited differential responses to odor, 

with more robust activity evoked in the individual synapses in the γ2 and γ3 compartments 

relative to those in the γ4 and γ5 compartments. Although we did not routinely image the γ1 

compartment, presynaptic Ca2+ was often lower there in comparison to more distal portions 

of the lobe (Figure 4C), indicating it is unlikely that action potentials simply fail to 

propagate the length of KC axons. Together, these data suggest that synapses along 

individual KC axons are functionally diverse, such that the same olfactory signal is 

differentially represented by each axonal segment of a neuron.
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Dopamine Modulates Synapses along KC Axons

The asymmetry of KC synaptic responses points to the possibility that active modulation by 

the DANs that tile the γ lobe may regulate synaptic signaling within each compartment. 

Interestingly, while DAN activity patterns rapidly fluctuated in tethered animals, the high 

γ2/γ3 and low γ4/γ5 DAN network state significantly predominated (Figure S2D), 

potentially reflecting a fly's frequent struggle to escape. The similarity between this DAN 

network state (Figure 2E) and the pattern of KC presynaptic Ca2+ we consistently observed 

(high γ2/γ3 and low γ4/γ5, Figure 4C) led us to ask if the behavioral state of the fly can 

directly modulate olfactory signaling along the lobe. We therefore examined KC responses 

in a brain explant where basal fluctuations in DAN activity were greatly reduced (data not 

shown), and we found that direct activation of KCs evoked a uniform sytGCaMP signal 

across the length of the lobe in this ex vivo preparation (Figures 4D, S4D, and S4E). In 

contrast, direct KC stimulation in vivo elicited a modular response pattern (Figures S4F and 

S4G) resembling that triggered by odor. We therefore conclude that, while KC axons have 

the anatomic potential to transmit equivalent neural signals to all compartments of the γ 

lobe, in vivo modulation induces functional heterogeneity along their length.

We next asked whether acute alterations to the state or circumstances of an animal can 

modify the pattern of presynaptic Ca2+ along KCs. Given that sucrose ingestion elicits the 

reciprocal pattern of DAN activity (high γ4/γ5 and low γ2/γ3, Figure 2B) as that associated 

with flailing behavior, we reasoned this appetitive reward might alter the distribution of 

presynaptic Ca2+ across lobe compartments. Overnight fasting did not change the profile of 

presynaptic Ca2+ along γ KCs (Figure S3E). However, after sugar feeding the odor-evoked 

synaptic responses in the γ4 and γ5 compartments relatively increased, while the responses 

in the γ2 compartment relatively decreased (Figure 5A). Sucrose ingestion, therefore, 

differentially modulates the olfactory responses of KC synapses along the γ lobe, paralleling 

the bidirectional pattern of DAN activity evoked by this appetitive reward.

To confirm that DAN activation is sufficient to modify odor-evoked synaptic responses in 

KCs, we used the 58E02 promoter to drive expression of P2X2 in the γ4 and γ5 DANs 

excited by sugar feeding (Figure 2B). Stimulation of 58E02+ DANs with ATP altered the 

profile of odor-evoked Ca2+ along γ KC axons, relatively increasing the signal in the distal 

lobe compartments while decreasing it in the proximal compartments (Figures 5B and 5C), 

resembling the changes induced by sucrose ingestion. Thus, both exogenous and 

physiological activation of DAN reinforcement pathways can modulate KC synapses with 

striking spatial precision. Changes in odor-evoked presynaptic Ca2+ persisted for the 

duration of an experiment (up to ~1 hr, Figure S5A), indicating that intensely salient 

experiences, like tethering or sugar ingestion, can alter the state of KC synapses with 

enduring consequences for how all subsequent olfactory signals are processed.

Dopamine receptors DopR1 and DopR2 are both highly expressed within the mushroom 

body lobes and comprise essential molecular pathways regulating the formation and 

maintenance of learned olfactory associations (Berry et al., 2012; Kim et al., 2007; Qin et 

al., 2012). To verify that dopaminergic signaling directly contributes to compartmentalized 

patterns of synaptic modulation along KCs, we examined mutants for these receptors and 
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found that the profile of odor-evoked sytGCaMP fluorescence was inverted in DopR2 

mutants (Figure 5D). Selective knockdown of DopR2 in γ KCs using RNAi similarly altered 

the pattern of synaptic Ca2+ along KC axons (Figures 5E and S5B), demonstrating that 

dopamine acts presynaptically to shape odor processing.

DopR1 mutants exhibited a subtler phenotype (Figure S5C), while the distribution of 

synaptic Ca2+ in DopR1/DopR2 double mutants was still asymmetric (Figure S5D), 

implying that additional dopamine receptors or neuromodulatory pathways (Aso et al., 

2014a; Tanaka et al., 2008) may influence the patterning of KC presynaptic Ca2+. We 

therefore examined synaptic responses in mutants for the dopamine reuptake transporter 

(DAT), which mediates clearance of dopamine from the synaptic cleft (Kume et al., 2005) 

and regulates dopamine signaling independent of any specific receptor. The profile of odor-

evoked pre-synaptic Ca2+ in DAT mutants was significantly altered, resembling the 

phenotype of the DopR1/DopR2 mutant (Figure S5E). These manipulations of dopamine 

detection and handling confirm that dopaminergic signaling, and not simply DAN activity, 

contributes to the precise spatial topography of presynaptic Ca2+ along KC axons, providing 

a functional link between molecular and neural mechanisms.

Dopaminergic Modulation of KC-MBON Neurotransmission

Together, our experiments indicate that dopaminergic modulation can acutely modify 

synaptic responses in discrete subcellular domains along individual KC axons. If this 

presynaptic modulation resulted in altered neurotransmission to the MBONs, our data would 

suggest that the state of the DAN network could dynamically regulate the flow of olfactory 

information to each output pathway. We therefore assessed how DAN activity modifies KC-

MBON signaling using electrophysiology to monitor neurotransmission at the resolution of 

individual synaptic events.

We targeted the γ4 MBON for voltage-clamp recordings as it innervates the compartment 

exhibiting the most robust dopamine-dependent modulation of KC presynaptic Ca2+ (Figure 

5B). Recordings were performed in a brain explant where reduced basal activity allowed for 

the measurement of well-isolated synaptic currents and provided precise control over the 

neuromodulatory state of synapses. We stimulated KC dendrites in the calyx to evoke 

excitatory postsynaptic currents (EPSCs) in the γ4 MBON and observed that the strength of 

these synaptic inputs markedly increased following 58E02+ DAN activation (Figure 6A). 

Spontaneous synaptic events also were potentiated whether DANs were activated using 

P2X2 or a red-shifted channelrhodopsin (Figure S6A). The average latency of EPSCs after 

KC stimulation was 3.8 ± 0.1 ms, consistent with monosynaptic transmission (Kazama and 

Wilson, 2008), identifying KC-MBON synapses as the site of dopaminergic modulation. 

Focal application of the inhibitory neurotransmitter GABA onto KC dendrites resulted in the 

loss of synaptic events, further substantiating KCs as the source of this potentiated synaptic 

input (Figure S6A). In contrast to the prominent modulation of synaptic currents, activation 

of 58E02+ DANs had no apparent effect on the baseline membrane voltage or evoked 

spiking of γ KCs (Figure S6B). Dopaminergic modulation, therefore, potentiates 

neurotransmission at KC-MBON synapses without appearing to change the intrinsic 
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excitability of KCs, providing a mechanism to alter the propagation of olfactory signals to 

each MBON without modifying the underlying KC odor representation.

Compartmental Specificity of Dopaminergic Modulation

Dopamine can act diffusely, regulating circuit properties at a distance from its site of release 

(Rice et al., 2011). We therefore asked whether DANs modulate synaptic signaling only in 

the compartments they innervate or more broadly along the lobe. Functional imaging 

revealed that the response of the γ4 MBON to direct KC stimulation was enhanced after 

58E02+ DAN activation (Figures 6B and S6C), consistent with the potentiation measured by 

electrophysiology. In contrast, activation of the γ4 DAN had no effect on the response of the 

γ2 MBON (Figure 6D). Likewise, activation of the γ2 DAN strengthened the γ2 MBON 

response to KC stimulation (Figures 6C and S6C), but resulted in a small but significant 

depression of activity in the γ4 MBON (Figure 6E). Together, these experiments indicate 

that the segregated axonal innervation by DANs permits spatially restricted potentiation of 

KC-MBON neurotransmission, localized to the synapses within a compartment.

State-Dependent Changes in MBON Activity Patterns

Heterogeneous neurotransmission from the synapses along a single axon has been described 

in the cortex and hippocampus as a possible substrate for independent plasticity between a 

neuron and its myriad of postsynaptic targets (Markram et al., 1998; Pelkey and McBain, 

2007). However, rarely has it been possible to trace the propagation of neural signals from 

nearby synapses on the same axons to distinct postsynaptic pathways. We took advantage of 

the compartmentalized architecture of the mushroom body to examine whether the localized 

synaptic modulation along KC axons results in differential olfactory responses across the 

MBONs that tile the lobe. We expressed GCaMP6s in pairs of γ MBONs (γ2/γ4 or γ3/γ5, 

Figure 7A), and we simultaneously measured dendritic Ca2+ responses to odor stimuli in 

their segregated projections. Every odor evoked significantly more robust responses in the 

γ2 and γ3 MBONs compared to the γ4 and γ5 MBONs (Figure 7B), paralleling the 

compartmental differences exhibited by KCs to olfactory stimuli (Figure 4C). In contrast, 

direct stimulation of KCs in a brain explant elicited comparable responses across MBONs 

(Figure 7C), confirming that, in the absence of in vivo modulation, KCs have the inherent 

capacity to transmit equivalent signals to the different output pathways of the lobe (Figures 

4D, S4D, and S4E).

Together, these observations indicate the odor responses of MBONs are differentially tuned 

by the activity of their cognate DANs, allowing contextual cues to shape olfactory signaling 

through the parallel outputs of the lobe. In support of this conclusion, we found that 

exogenous activation of the γ4 DANs via P2X2 resulted in robust potentiation of the γ4 

MBON responses to all odors tested (Figures 7D, S7A, and S7B), while olfactory responses 

in the γ2 MBON were unaffected (Figure 7E). Similarly, sugar feeding, an appetitive 

stimulus that activates the γ4/γ5 DANs and inhibits the γ2/γ3 DANs (Figure 2B), enhanced 

the γ4 MBON odor response relative to the γ2 MBON response (Figure 7F). Thus, acute 

changes to the state or context of an animal can rapidly gate the transmission of olfactory 

signals to the MBONs of the lobe, permitting the same odor stimulus to drive distinct 

patterns of output activity in different contexts.
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DAN Activity Bidirectionally Modulates KC-MBON Signaling

Dopamine can modulate synaptic communication in diverse ways—including potentiation or 

depression of neurotransmission and modifications to both short- and long-term plasticity 

(Tritsch and Sabatini, 2012). Our data indicate that DAN activation by salient reinforcement 

experiences can modify the state of KC synapses with enduring consequences to how all 

subsequent odor signals are processed. In contrast, during associative learning, the 

contingent pairing of olfactory and dopaminergic reinforcement pathways is thought to alter 

neurotransmission from odor-specific KC ensembles to allow formation of select olfactory 

memories (Heisenberg, 2003; Keene and Waddell, 2007). We therefore asked whether 

coincident activation of KCs and DANs elicits a distinct form of synaptic modulation in 

comparison to when DANs are activated independently. Remarkably, temporally pairing 

58E02+ DAN activation with KC stimulation resulted in depression of KC-evoked γ4 

MBON responses, in contrast to the robust potentiation induced by activation of DANs 

alone (Figures 7G–7I). Interleaving temporally paired and unpaired stimulation protocols 

produced depression and potentiation within the same preparation, indicating that KC-

MBON synapses are capable of rapid and reversible bidirectional plasticity (Figures 7H, 

S7C, and S7I). Depression of KC-MBON signaling was restricted to the compartment 

innervated by the activated DANs, suggesting a similar spatial specificity for these opposing 

forms of dopaminergic modulation (Figure S7J).

If depression of KC-MBON signaling were limited to only KCs co-activated during an 

olfactory experience, our observations would provide a mechanistic basis for the odor-

specific modulation thought to underlie learned olfactory associations within the mushroom 

body. We therefore monitored the responses of the γ4 MBON to two different odors and 

then paired the presentation of one odor with 58E02+ DAN stimulation. Following DAN 

activation, the MBON's response to the paired odor was significantly reduced relative to the 

unpaired odor (Figure 7J). Thus, DAN activity can bidirectionally modulate KC-MBON 

signaling, allowing for both odor-independent synaptic potentiation as well as odor-specific 

depression.

DISCUSSION

In this study, we took advantage of the mushroom body's orderly architecture to gain insight 

into the circuit mechanisms through which neuromodulation mediates flexible sensory 

processing. Compartmentalized dopaminergic signaling permits independent tuning of 

synaptic transmission between an individual KC and its repertoire of postsynaptic MBON 

targets. As a consequence, the same KC odor representation can evoke different patterns of 

output activity, depending on the state of the animal and the dopaminergic network. Recent 

data indicate that the ensemble of MBONs acts in concert to bias an animal's behavioral 

response to an odor such that altering the balance of their activity can modify the olfactory 

preferences of both naive and trained animals (Aso et al., 2014a; Lewis et al., 2015; Owald 

et al., 2015). In accord with such a model, we reveal how a distributed neuromodulatory 

network is poised to orchestrate plasticity across all 15 compartments of the mushroom body 

and reweight the net output of the MBONs, allowing for adaptive behavioral responses 

based on the immediate needs or past experience of the animal.
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A Dynamic Neuromodulatory Network

Distinct subsets of DANs are sufficient to drive learned olfactory associations (Aso et al., 

2012; Claridge-Chang et al., 2009; Liu et al., 2012; Waddell, 2013; Yamagata et al., 2015), 

leading to the suggestion they may act autonomously to encode the rewarding or punishing 

contextual stimuli that assign meaning to an odor. Our data, however, suggest a more 

complex circuit architecture, in which rich functional interconnectivity between 

compartments contributes to coordinated and bidirectional patterns of activity across the 

DAN population. This raises the possibility that reinforcement experiences may be 

represented by combinatorial patterns of DAN excitation and inhibition in different 

compartments, endowing the dopaminergic population with a greater capacity to instruct 

behavior via the limited repertoire of mushroom body outputs. Intriguingly, midbrain 

dopaminergic neurons responsive to punishment and reward also project to distinct targets in 

the mammalian brain and display a similar functional opponency as a consequence of 

reciprocal network interactions (Cohen et al., 2012; Lammel et al., 2012, 2014; Lerner et al., 

2015). Thus, the concerted and partially antagonistic action of neuromodulatory pathways 

may represent a general and conserved circuit principle for generating adaptive behavioral 

responses.

Distinct DAN network activity states are evoked by electric shock and sugar ingestion, 

reinforcers classically used in associative olfactory conditioning paradigms because of their 

strong inherent valence. However, similarly distributed patterns of DAN activity are 

correlated with the fly's motor activity, implying that an animal's behavioral state might 

serve as a reinforcement stimulus that itself drives synaptic plasticity to shape odor 

processing. Metabolic states, such as thirst and hunger, have been shown to gate appetitive 

reinforcement by water and sugar rewards (Burke et al., 2012; Huetteroth et al., 2015; Lin et 

al., 2014), permitting state-dependent formation of olfactory associations only in motivated 

animals. Our data highlight an additional facet of how an animal's internal state can regulate 

dopamine release to adjust the salience of contextual cues. Together, these observations 

indicate that the distributed DAN network integrates information about external context and 

internal state with MBON feedback to represent the moment-by-moment experience of an 

animal and dynamically regulate the flow of olfactory signals through the mushroom body.

Spatially Precise Synaptic Modulation

The independent regulation of synapses along an axon is thought to permit a single neuron 

to convey specialized information to different downstream targets, providing additional 

flexibility and computational power to neural circuits (Markram et al., 1998; Pelkey and 

McBain, 2007). In the mushroom body, synapse-specific plasticity is achieved through 

spatially restricted patterns of dopaminergic modulation that divide a KC axon into 

functionally distinct segments. Thus, the ensemble of synapses within a compartment, as the 

site of convergence for sensory and contextual signals, represents the elementary functional 

unit that underlies experience-dependent mushroom body output.

Within a compartment, multiple neuromodulatory mechanisms appear to shape synaptic 

signaling. We observed broad potentiation of KC-MBON synapses after DAN activation but 

odor-specific depression if DANs were coincidently activated with KCs, consistent with the 
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synaptic changes previously proposed to occur after learning (Aso et al., 2014b; Owald et 

al., 2015; Séjourné et al., 2011). Taken together, these findings indicate that 

neuromodulation in the mushroom body instructs opposing forms of synaptic plasticity, 

analogous to the bidirectional tuning of synaptic strength by dopamine in mammalian brain 

centers (Huang et al., 2004; Shen et al., 2008; Tritsch and Sabatini, 2012). The molecular 

mechanisms through which dopamine can direct diverse synaptic changes within a 

compartment remain to be elucidated, but they may depend on signaling through different 

dopamine receptors or downstream signaling cascades that function as coincidence 

detectors. Indeed, while DopR1 in KCs is essential to the formation of learned olfactory 

associations (Kim et al., 2007; Qin et al., 2012), we find this receptor plays only a subtle 

role in the context-dependent patterning of Ca2+ along their axons. Conversely, DopR2 

strongly influences the topography of presynaptic Ca2+ along KC axons, in accord with 

evidence that tonic release of dopamine during ongoing behavior acts through this receptor 

to interfere with the maintenance of specific learned olfactory associations (Berry et al., 

2012, 2015). Thus, distinct molecular pathways may transform the same dopaminergic 

reinforcement signals into synaptic changes of opposite polarity to shape olfactory 

processing based on both the present context and prior experiences of an individual.

A Common Integrative Circuit Architecture for Adaptive Responses

The mushroom body has been most extensively studied as a site for associative learning 

(Heisenberg, 2003; Keene and Waddell, 2007) in which the temporal pairing of an odor with 

a reinforcement experience selectively alters subsequent behavioral responses to that odor. 

Our data suggest that the convergence of DAN network activity and KC olfactory 

representations within the mushroom body lobes may drive associative plasticity in each 

compartment, allowing the odor tuning of the MBON repertoire to reflect the unique 

experiences of an individual (Hige et al., 2015). However, our observations also provide 

insight into the mushroom body's broader role in the context-dependent regulation of innate 

behaviors (Lewis et al., 2015; Owald et al., 2015). The ongoing activity of the distributed 

DAN network, encoding information about an animal's current environmental context and 

behavioral state, is poised to continuously reconfigure the activity patterns of the MBON 

population to allow for adaptive responses based on the acute needs of the animal. This 

context-dependent synaptic modulation could potentially erode odor-specific learned 

associations within the mushroom body, permitting the immediate circumstances of an 

animal to dominate over previously learned olfactory associations that may no longer be 

predictive or relevant. The axons of MBONs ultimately converge with output pathways from 

the lateral horn (Aso et al., 2014a, 2014b), a Drosophila brain center thought to mediate 

stereotyped responses to odors, providing a potential substrate for learned and context-

dependent output from the mushroom body to influence inherent olfactory preferences.

Thus, the dual role of neuromodulation in the mushroom body—to select among alternative 

circuit states that regulate both innate and learned behaviors—is reminiscent of its function 

in other higher integrative brain centers. In the basal ganglia, for example, different temporal 

patterns of dopamine release are thought to select the relevant circuit configurations that 

control inherently motivated behaviors as well as reinforcement learning (Graybiel et al., 

1994; Grillner et al., 2005; Kreitzer and Malenka, 2008; Yin and Knowlton, 2006). The 
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generation of flexible behavioral responses based on experience, whether past or present, 

may therefore rely on common integrative brain structures in which neuromodulatory 

networks act with exquisite spatial precision to shape sensory processing.

EXPERIMENTAL PROCEDURES

Detailed methods associated with all procedures below are available in the Supplemental 

Experimental Procedures.

Fly Stocks

A detailed list of fly genotypes can be found in the Supplemental Experimental Procedures. 

The sytGCaMP was generated by linking the GCaMP6s and Drosophila synaptotagmin 1 

coding sequences through a 3×GS linker. The resulting construct (sytGCaMP) was used to 

generate transgenic flies by PhiC31-based integration into attp40, attp5, and VK00005 

(BestGene).

Functional Imaging

All functional imaging experiments were performed on an Ultima two-photon laser-

scanning microscope (Bruker Nanosystems) as previously described (Ruta et al., 2010). For 

volumetric imaging, the laser was directed through an 8-kHz resonant scanning 

galvonometer and the objective was controlled by a piezo-electric Z-focus. Z planes (12–18 

planes), spaced ~2 μm apart, were defined to encompass the entire volume of the γ lobe and 

imaged at ~1.5 Hz. Odor stimulation was achieved by directing a continuous stream (400–

500 ml/min) of air through a 2-mm-diameter teflon tube at the fly. At a trigger, 5%–10% of 

the total airstream was diverted from a 10-ml glass vial containing paraffin oil to to a vial 

containing odorants diluted in paraffin oil.

Electrophysiology

The γ4 MBON and KC soma were targeted for patch recording using GCaMP or GFP 

fluorescence. Recordings were carried out as previously described (Ruta et al., 2010). The 

membrane potential during voltage clamp was nominally −70 mV. At this voltage, 

unclamped action potentials rarely broke through and were readily detected by their large 

amplitude.

Exogenous Activation of KCs and DANs

Glass stimulating electrodes (resistance of 7–10 MΩ) were filled with 2 mM ATP or 10 mM 

acetylcholine. To stimulate DANs and MBONs expressing the P2X2 receptor, electrodes 

were positioned dorsal to the mushroom body's medial lobes at the site of DAN dendritic 

and MBON axonal innervation and ATP was applied by a positive pressure pulse. KCs were 

stimulated by iontophoresing acetylcholine into the calyx using voltage pulses. For paired 

trials, KC and DAN stimulation were carried out within <500 ms of each other. For unpaired 

trials, KC and DAN stimulation were separated by >45 s. All DAN activation experiments 

were unpaired unless noted.
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Tethered Fly Behavior

A Point Grey Firefly Camera with Infinity Lens (94-mm focal length) was focused on a fly 

illuminated by infrared light-emitting diodes (LEDs). Video was captured at 30 frames/s. 

Fly motion traces were extracted using a custom MATLAB script. For sugar feeding, flies 

were fasted for 20–26 hr and then offered a paper wick soaked in 0.2–1 M sucrose using a 

motorized micromanipulator (Scientifica). For punitive shock, steel electrode leads were 

positioned on a fly's abdomen and 0.5-s pulses of 60–150 V were applied from a stimulator 

(Grass Technologies).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mushroom body dopaminergic neurons act in concert to represent contextual 

cues

• Dopamine bidirectionally modifies synapses in precise domains along Kenyon 

cell axons

• Odor signals are differentially conveyed to each postsynaptic target of a Kenyon 

cell

• Activity of output pathways depends on animal's external context or internal 

state
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Figure 1. Compartmentalized Architecture of the Mushroom Body
(A) Schematic of mushroom body anatomy focusing on the γ lobe. Each γ Kenyon cell (KC, 

blue) receives olfactory input in the calyx and projects a single axon into the γ lobe (dashed 

line). KCs form en passant synapses with mushroom body output neurons (MBONs, green) 

and receive modulatory input from dopaminergic neurons (DANs, magenta) within discrete 

anatomic compartments (shown for γ2–γ5).

(B) A single γ KC axon photolabeled with PA-GFP projects its axon across the complete 

length of the lobe (dashed line).

(C) Segregated dendritic innervation of MBONs is revealed by expression of GFP in pairs of 

MBONs in each panel using MBON-specific drivers.

(D) Compartmentalized axonal projections of DANs photolabeled with PA-GFP in 

alternating compartments. PA-GFP is expressed under the TH and DDC promoters.

(E) sytGCaMP expressed in all γ KCs with only a single KC functionally activated. 

Maximum intensity projection shows peak fluorescence from multiple T-series in different Z 

planes. Magnified view shows individual KC synaptic puncta (right).

See also Figure S1.
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Figure 2. DAN Network Activity Reflects Both External Sensory Stimuli and Internal Behavioral 
State
(A) The sytGCaMP was expressed in DANs of all γ-lobe compartments, driven by the 

combination of TH and DDC promoters and imaged in response to sucrose ingestion and 

electric shock.

(B and C) Sucrose ingestion and electric shock. Schematic of stimulus (top) with 

representative heatmap (ΔF/F0) and normalized intensity trace of DAN sytGCaMP response 

to the stimulus (B, sucrose; C, shock) below are shown. (Bottom) Stimulus-triggered 

averages ± SEM for DANs of each compartment are shown. (B, n = 10 traces in nine flies; 

C, n = 21 traces in 11 flies). Fluorescence in other lobes is masked for clarity. Black scale 

bar indicates 1 s throughout figures unless otherwise noted.

(D) Representative normalized fluorescence traces of γ lobe DANs aligned to fly's motion 

(top). Dashed lines delineate start and end of a single representative bout of flailing. Cross-

correlations between motion trace and activity in DANs of each compartment are shown 

(bottom, n = 12 traces in six flies).

(E) Schematic and still image from video showing the fly in flailing (right) and quiescent 

(left) behavioral states (top). Representative heatmap (ΔF/F0) of DAN activity in response to 

start and stop of flailing is shown (middle). Average DAN fluorescence ± SEM in each 
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compartment aligned to the start and stop of flailing is shown (bottom, n = 14 traces in six 

flies).

See also Figure S2, Table S1, and Movies S1 and S2.
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Figure 3. Functional Communication between Compartments Coordinates DAN Network 
Activity
(A–E) DAN sytGCaMP activity patterns evoked by activation of P2X2 expressed in the (A) 

58E02+ DANs innervating γ4-5, (B) γ2 MBON, (C) γ3 MBON, (D) γ4 MBON, and (E) γ5 

MBON. The sytGCaMP was expressed in DANs of all γ-lobe compartments using the TH 

and DDC promoters. Schematic of stimulus (top left), representative heatmap (bottom left, 

ΔF/F0), normalized intensity trace for representative experiment shown (top right), and 

stimulus-triggered averages ± SEM for DANs of each compartment (bottom right) are 

Cohn et al. Page 21

Cell. Author manuscript; available in PMC 2016 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown. ATP stimulation is shown as pink bar (58E02, n = 8; γ2, n = 8; γ3, n = 8; γ4, n = 8; 

γ5, n = 12).

See also Table S1.
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Figure 4. Compartmentalized Ca2+ Domains along KC Axons In Vivo
(A) Schematic (top) and representative basal fluorescence of sytGCaMP expressed in γ KCs 

labeled with approximate compartmental borders (bottom) are shown.

(B) Volumetric two-photon resonant imaging of odor-evoked sytGCaMP reveals 

asymmetric presynaptic Ca2+ in γ KCs in each imaging plane.

(C) Maximum-intensity Z-projection of all 15 imaging planes sampled through the γ lobe in 

the example shown in (B) (top). Average normalized odor-evoked profile of sytGCaMP 

fluorescence intensity along the γ lobe (gray line, n = 21 flies) and peak intensity for each 

compartment (black dots, n = 21) with mean ± SEM in red (middle) are shown. Odor-

evoked time courses were imaged in each compartment for representative experiment shown 

above (bottom, blue lines indicate 1-s odor stimulus).

(D) Representative image of sytGCaMP signal in γ KCs in response to direct stimulation of 

KCs by acetylcholine iontophoresis into the mushroom body calyx in a brain explant (top). 

Normalized intensity profiles for ex vivo stimulation across a range of iontophoretic 

voltages (1–10 V) with average profile for each voltage in a different colored line are shown 

(n = 6). Stimulation-evoked time courses were imaged in each compartment for 

representative experiment shown above (bottom, blue lines indicate stimulation).

(E) tdTomato expressed in γ4 and γ5 DANs using 58E02-LexA (top, middle). 

Compartmentalized KC sytGCaMP responses in the same fly shows synaptic Ca2+ domains 

have sharp boundaries that align to the border between γ3 and γ4 compartments.

(F) Odor response in a sparse subset of γ KCs expressing sytGCaMP (heatmap, top) and 

tdTomato (grayscale, middle). Odor-evoked time courses were measured at individual 

synaptic boutons (bottom).
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All KC heatmaps in this figure represent peak fluorescence. Values marked with different 

lowercase letters represent significant differences (p < 0.05 by t test with correction for 

multiple comparisons).

See also Figures S3 and S4 and Movie S3.
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Figure 5. Dopaminergic Signaling Shapes the Distribution of KC Presynaptic Ca2+

(A) Representative odor-evoked KC sytGCaMP response before and after sucrose ingestion 

(bottom left). Normalized intensity profiles pre- and post-sugar ingestion and the change due 

to sugar feeding (post-pre) for the representative images are shown (top right). Average 

change in normalized intensity profile induced by sugar ingestion is shown (bottom right, n 

= 11 flies).

(B) Schematic of γ lobe P2X2 expression under the 58E02 promoter (top left) and 

representative odor-evoked responses in γ KCs expressing sytGCaMP, pre- and post-

activation of 58E02+ DANs with ATP (bottom left). Normalized intensity profiles and 

change due to DAN activation for the representative images are shown (top right). Average 

change in normalized intensity profile induced by DAN activation is shown (bottom right, n 

= 10 flies).

(C) As in (B), but all are shown in control flies lacking P2X2 expression (n = 6 flies).

(D) Representative odor-evoked response of γ KCs expressing sytGCaMP in DopR2 mutant 

and wild-type flies (top). Fluorescence in other lobes is masked for clarity. Average 
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normalized odor-evoked profile across the γ lobe and compartmental averages (bottom) in 

flies mutant for DopR2 (red, n = 8) and wild-type (black, n = 8) are shown.

(E) As in (D), but this compares γ KC-specific knockdown of DopR2 using RNAi (red, n = 

14) to wild-type flies (black, n = 5).

All KC heatmaps in this figure represent peak fluorescence to odor stimulation 

(Experimental Procedures). Error bars in all panels are SEM. Significant differences in 

relative compartment intensity compared to wild-type are indicated as follows: *p < 0.05, 

**p < 0.005, and ***p < 0.0005.

See also Figure S5.
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Figure 6. DANs Selectively Potentiate KC-MBON Synaptic Transmission in Individual 
Compartments
(A) Schematic of experimental setup. Synaptic currents were measured in the γ4 MBON 

(green) by voltage-clamp recordings in response to direct KC stimulation by acetylcholine 

iontophoresis in the calyx (Stim). P2X2-expressing 58E02+ DANs (magenta) were activated 

by local ATP injection (left). Representative γ4 MBON recordings (center) show overlay of 

ten KC stimulations pre- (grayscale) and post-(redscale) activation of 58E02+ DANs by 

ATP injection. Note the potentiation evident in both spontaneous and evoked EPSCs. 

Vertical line denotes 2-ms KC stimulation. Amplitude of evoked currents in the γ4 MBON 
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pre- and post-ATP injection is shown (right, average of ten stimulations each in n = 5 

recordings). (B–E) MBON responses to KC stimulation are potentiated by activation of 

DANs within the same compartment, but not in other compartments. Schematic (top), time 

courses (bottom left), and quantification of responses to KC stimulation (bottom right) 

before and after ATP injection were recorded in (B) the γ4 MBON with activation of the γ4-

γ5 (58E02+) DANs (n = 6), (C) the γ2 MBON with activation of the γ2 DAN (n = 6), (D) 

the γ2 MBON with activation of the γ4-5 DANs (n = 6), and (E) the γ4 MBON with 

activation of the γ2 DAN (n = 6). All pairwise comparisons plot mean ± SEM. Significance 

of change after activation is indicated as follows: *p < 0.05 and **p < 0.005.

See also Figure S6.
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Figure 7. State-Dependent and Bidirectional Modulation of KC-MBON Signaling
(A) Schematic shows pairs of MBONs expressing soluble GCaMP6s used for functional 

imaging in (B) and (C).

(B and C) Representative heatmaps of evoked fluorescence (top left in each panel, ΔF/F0), 

time courses (bottom left), and scatterplots (right) of responses to odor stimuli (blue line) in 

pairs of MBONs in vivo (B, n = 8 for γ2 versus γ4, n = 11 for γ3 versus γ5) and evoked by 

calycal stimulation in a brain explant (C, n = 8 for each pair). Values marked with different 
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lowercase letters represent significant differences (p < 0.05 by t test with correction for 

multiple comparisons).

(D and E) MBON olfactory responses are potentiated by activation of DANs within the 

same compartment, but not in other compartments. (D) Schematic (left) and quantification 

of γ4 MBON odor responses before and after stimulation of the γ4-5 (58E02+) DANs are 

shown (n = 6, right). (E) As in (D), but γ2 MBON response with activation of the γ4-5 

DANs was quantified (n = 6).

(F) Ratio between odor-evoked responses in the γ4 MBON and γ2 MBON before and after 

sugar feeding is shown (n = 10).

(G) Schematic (left) and experimental design (right) for (H)–(J). The γ4 MBON responses to 

direct KC stimulation (in H–I) or odor stimuli (in J) were recorded before and after 58E02+ 

DAN activation that was either temporally paired or unpaired with KC stimulation. Dashed 

lines here and below represent >45-s delays.

(H) Representative γ4 MBON GCaMP responses to KC stimulation showing bidirectional 

modulation of KC-MBON signaling by activation of 58E02+ DANs depending upon 

whether DAN and KC activation were temporally paired or unpaired. Blue lines indicate 

time of KC stimulation.

(I) Changes in γ4 MBON responses to KC stimulation following activation of 58E02+ 

DANs that was either paired (left, n = 6, starting from a potentiated state) or unpaired (right, 

n = 12, starting from a depressed state) with KC stimulation are shown (see Figure S7 and 

Supplemental Experimental Procedures).

(J) Change in γ4 MBON response to an odor that was paired with 58E02+ DAN activation 

using P2X2 relative to a second odor that was unpaired is shown (n = 10). All pairwise 

comparisons in this figure represent the mean (±SEM) with significant changes indicated as 

follows: *p < 0.05, **p < 0.005, and ***p < 0.0005.

See also Figure S7.
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